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Summary. A convenient procedure has been proposed recently to insure the 
size-consistence of Singles and Doubles CI; the method goes through a self- 
consistent dressing of the energies of the excited determinants which incorporates 
the unlinked effects of the Triples and Quadruples. Two strategies are proposed 
here to add the linked contributions of the Triples and Quadruples, either by an 
perturbative MP-type calculation of these effects, or by a redefinition of the 
dressing of the SD-CI matrix. Test calculations on Be2, FH, NH3 and F2 molecules 
show that both methods efficiently approach the Full CI results (error 

1 kcal mol- 1). The second one satisfactorily treats the single-bonds breaking. It 
is finally shown that the effect of the T-Q linked effects may be efficiently 
approximated by truncating the MO basis set to the most occupied virtual 
quasi-natural MOs. 
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1 Introduction 

The low convergence of the /-expansion for the calculation of the dynamical 
correlation energy [1] is a major problem. The recent progresses proposed by 
Kutzelnigg [2-7] to combine the explicit introduction of the r12 factor with 
classical expansions of the wavefunction in terms of configurations in a basis of 
Molecular Orbitals, appears as a promising answer. Nevertheless, the obtaining of 
efficient, cheap, universal and well-conditioned techniques to approximate the Full 
Configuration Interaction (FCI) in a given basis remains an important task. 

The most elegant solution consists in the Coupled Cluster formulation [8], 
which insures the requirements of size-consistence, separability and invariance 
under unitary transformation of the MOs. However, the extension of that formula- 
tion to multireference zeroth-order descriptions is necessary to treat correctly bond 
dissociations and has not yet received fully satisfactory solutions I-9]. The most 
largely used level of that method restricts the excitation operator acting on ~bo to 
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the Single and Double excitations (CCSD). Inclusion of the effect of the Triple 
excitations is frequently done perturbatively at the fourth-order M611er-Plesset 
(MP4) level and appears in the literature as the CCSD + T (CCSD) approximation 
[10]. The non-perturbative inclusion of the triple excitations (CCSDT) is much 
more costly. 

A cheaper method was proposed by Kelly [11] and later developed by Meyer 
[12], Alrichs, Kutzelnigg and coworkers [13], under the name of Coupled Electron 
Pair approximations. This method is size extensive and some formulations insure 
the invariance under the rotations of the MOs, but they do not insure the 
separability even into closed-shell fragments. The method does not incorporate the 
effect of the Triple excitations. Size extensivity is also obtained in the Coupled Pair 
Functional (CFP) [14] through a modification of the norm in the Singles and 
Doubles CI (SDCI). 

A recent proposal, derived from the intermediate Hamiltonian formalism [15], 
has shown that the SDCI ground-state solution may be made size extensive (and 
even strictly separable when localized MOs are used), provided that the SDCI 
matrix redeives appropriate self-consistent dressings [16]. These dressings consist 
in modifications of the matrix elements. They may concern either the (q~o [HI ~b~> 
column of the matrix (q~o = HF determinant, ~bi = singly or doubly excited deter- 
minant), or the elements (~b~lH] ~bj>, or - more conveniently - the diagonal 
elements <q~i I HI 4~>. The justification of the method, its practical implementation 
and its efficiency have been reported in detail elsewhere 1-17]. The method - here- 
after called - Self-Consistent Size-Consistent SDCI ((SC)2SDCI) suppresses all the 
unlinked contributions of the Triples and Quadruples and incorporates all the 
Exclusion Principle Violating diagrams of various orders of the type: 

 iiiii0 etc. 

where the labels #, v run over either holes or particles. The method may be 
considered as an "exact-CEPA" version since it correctly treats the EPV contribu- 
tions which are either neglected (CEPA-O) or partially incorporated (through the 
holes only in the other CEPA versions). If one thinks in terms of Many Body 
Perturbation Theory, its main defect is the omission of  the linked 4th-order 
diagrams going through the Triples and Quadruples. 

There are several ways to go besides this approximation. Ref. [17] has pro- 
posed a universal solution to make size-extensive (and separable if localized MOs 
are used) any CI, for instance any Multireference (and in particular Complete 
Active Space) Singles and Doubles CI (MR-SDCI). It works as well on rationally 
selected CI's, or on arbitrarily truncated CI's. The size-consistence is again ob- 
tained through a self-consistent dressing of the CI matrix. One may find in Ref. 
[18] a set of test calculations illustrating the power and accuracy of these size- 
consistent dressed CIs, the dressing being introduced in Direct Selected CIs 
algorithms [19]. 
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This general strategy is certainly the most attractive for the future, but we 
examine here another possibility, namely the addition of the linked contributions 
arising from the Triples and Quadruples to the (SC)2SDCI energy. This addition 
may be performed along two different schemes, namely 

i) the simple addition of the Mrller-Plesset 4th-order linked contributions of 
Triples and Quadruples, as done in CCSD + T(CCSD). The method is MP4-1ike; 
since the coefficients of the Doubles are determined from a non-perturbative 
method it might be labelled (SC)2SDCI(TQ)L, the parentheses indicating that the 
corresponding linked effect is treated perturbatively. 
ii) a revision of the dressing of the SD-CI matrix to incorporate the linked effects of 
T and Q. 

These two schemes have been implemented in an efficient algorithm proposed 
recently by Maynau and Heully [20] and will be explicited in the next Section, 
which also discusses the physical effects incorporated, in comparison with other 
methods. They are tested on a series of calculations for which FCI results are 
available (FH at three interatomic distances, NH3 at equilibrium geometry, Be2 
potential energy curve) and on the F2 potential energy (a rather difficult problem), 
in order to compare with the most sophisticated treatments. The results are 
reported and discussed in Sect. 3. Finally Sect. 4 discusses the possibility to restrict 
the summation over the Triples and Quadruples by freezing the less occupied 
approximated natural MOs as calculated at the (SC)2SDCI level. 

2 Method 

2.1 The (SC)2SDCI 

The starting point may be described as the best CEPA approximation (treating all 
EPV terms). It has been obtained as a special application of a universal procedure 
based on the intermediate effective Hamiltonian Theory, but it might be obtained 
from the CEPA approach or from CC-SD as well. Purvis and Bartlett had 
suggested such a strategy in an early paper [21]. 

The method consists in diagonalizing a matrix built on q~o (the Hartree-Fock 
single determinant) and the Singles and Doubles ¢i. If P is the projector on the 
corresponding space: 

P = [~bo><¢o] + ~ I~bi><q~i[ 
ieS,D 

one diagonalizes a matrix: 

I~ = P(H + ~')P 

where the I7 matrix is purely diagonal: 

<(~il Y[(~j> = 0 if i # j  

The eigenvector of H: 

H~h =E~h 
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is ~, which in the intermediate normalization is written: 

ieS,D 

and the dressing of each diagonal term associated with ~b~ is a function of ~: 

0,1 v140 = ~ (TX4,olH140> (1) 
+J 

Dj ~{ # 0 

where D + represents the double excitation operator creating q~j from ~bo: 

~j = &4'o 
In other words the energy of a determinant q~ is shifted by the effect of the double 
excitations which remain possible on it. Actually it is clear that: 

/~ = Z C~<4~oIH[ 4 0  
i 

So that the dressing may be rewritten: 

<~1;71~> = ~ -  ~ C/~olHl~bj> (2) 

,,;g,=o 
The two formulations (Eqs (1) and (2)) make evident the fact that the dressing 
incorporates: 

i) the unlinked effects of the Triples on the Singles and of the Quadruples on the 
Doubles, which cancels the unlinked terms brought by the truncation of the CI 
space to the Doubles. 

ii) the EPV terms, which give the last summation of Eq. (2). One incorporates 
therefore 3rd-order diagrams of the type: 

+ i 

. = .  

which will disappear when diagonalizing H + 17 and the EPV ones: 

II 

which stand. 

+ 

tt  

iliii  
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The Self-consistent character of the dressing insures that higher orders are 
included, which are obtained by adding additional interaction lines on the left 
and/or right parts of the above diagrams. 

Ref. [17] had discussed the practical implementation of the method, which may 
cost the same price as a SDCI diagonalization, since the dressing may be incorpor- 
ated within the Davidson's diagonalization [22] itself. The rapid computation of 
the dressing goes through a storage of one-, two-, and three-indexes arrays making 
partial summations of the increments C~ (qSo[ H kbj). One should mention that the 
(SC)2SDCI method does not diverge when studying a single bond breaking but 
that it is not invariant under the rotation of the MOs. 

2.2 Addition of  MP4-linked contributions 

To go besides that approximation the lacking MP4 terms should be added. The 
MP4 diagrams going through intermediate Singles and Doubles are already 
incorportated in E. The lacking contributions are those which go through Triples 
and Quadruples. One might add them by taking their effect from a full MP4 
program, using of course the high quality variationally calculated coefficients Ci of 
the Singles and Doubles. Within the algorithm proposed by Maynau and Heully 
[201 one calculates: 

EQ = ~ 1(~71Hl Q~)I 2 
o.~ AQ~ 

where AQ~, = E~ P - Er~ is the difference between the monoelectronic energies of 
the holes and particles defining the Quadruple configuration Q~ and similarly: 

I<~lnlZ~>l 2 
Er = E AT~ 

T~ 

However, these quantities include the unlinked effects of the Quadruples on the 
Doubles and of the Triples on the Singles. 

E UL The unlinked effects of the Triples and Quadruples, E UL and o , are then 
subtracted according to a procedure detailed in Appendix 1. Then: 

l<~71nlO~>l 2 E~L 
= £ AQ, (3) 

and 

El = E 1< Tlnl Z >12 VL 
T~ A T~ E r, (4) 

The final expression of the energy is: 

E(SC)2SD(TQ)~ = /~ + E L + E~2 (5) 

The acronym follows the well-accepted labelling of the CCSD(T) approximation, 
and the subscript L stands for Linked. 

If one thinks in terms of MP expansion, the socalculated energy/~ + E~ + EL 
incorporates all the 4th-order energy corrections of the MP expansion, plus infinite 
summations of diagrams obtained by introduction of additional interaction lines 
between the first and the second and/or the third and the fourth interaction lines 
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of the basic 4th-order diagrams. For instance, ~ r  a quadruple excitation 
OYO? = O~O:: t 3 

l+j - k+l i÷j - k + l  

i ::1-----o.:::0 
p 

k 

the effective coefficients C~ and Ck incorporate the effect of interactions with other 
double excitations D~ +, D~-, while one does not consider any interaction between 
the Quadruples. 

Of course, the coefficients of the Doubles are bound, they never exceed unity: 

whatever the <¢o IHI c~i>/Ai ratio. One may thus expect that the energy E~ + EL 
will never diverge when a single bond is broken, i.e. will never tend to infinity since 
the energy denominator A T~ and A Q~ are always different from zero. However, one 
may fear that E~ + EL becomes exceedingly large when a near-degeneracy occurs. 
Actually the addition of EPV diagrams where the violation takes place on the 
Quadruple intermediate configuration should strongly balance the main term. The 
effect of the interaction between Quadruples would certainly go in the same 
direction, as occurs for the interaction between the Doubles. 

2.3 Improvement of  the dressing of  the SD-CI matrix 

In that second strategy, one wants to include the linked and unlinked effects of the 
Triples and Quadruples on the Singles and Doubles through an improved dressing 
of the energies of the Singles and Doubles. Let be ¢, a Triple or Quadruple 
determinant, and let us suppose that it interacts with a configuration ~b~ belonging 
to the SD-model space (<¢ilnl¢=> # 0). Its effect on the coefficients Ci of ¢~ 
appears at the 3rd order: 

g~,~3) = <¢, IHI¢~> C~2)/A, 

where C (2) is the coefficient of ¢~ in the 2nd-order perturbed wavefunction ¢t2). 
More precisely 

C <2) = <¢~IHI ¢(x)-I/A~ (6) 

which may be replaced, including higher order contributions by: 

C; = <¢=IHIff >/A= 

where the prime in C' indicates that we are working in the intermediate normal- 
ization. 
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This may be rewritten: 
5Ct = <~,btlH[ ~>C'~/A, (7) 

by including higher-order contributions through C'. This effect of ~b~ on ~b~ may be 
obtained by a proper dressing (~btl V'~I ~,bt> of the diagonal energy of ~bt: 

C; 
<~,[ P~I~,> = < ~ t l H l ~ > ~  (8) 

since the increment 5C~ is given in the perturbative development of H + 17~, by: 

17"1~,> ] a< = ~ L At + higher orders 

_ < ~ t l  Ot 17;1~,> 
Ai 

This is equivalent to Eq. (7) if one replaces <q~d 17;I q~t> by Eq. (8). Then, the whole 
dressing of any determinant q~ by the outer space is: 

= tlHI~>C~ Ct (9) 

The most accurate treatment would consist in diagonalizing the dressed matrix 
P(H + 17')P, instead of P(H + 17)P, in the basis of the determinants: 

P(H + 17')P1~'> = E~'I~'> 

Instead of performing this full treatment, which will be the subject of a further 
work, we have used here a convenient approximation. We can consider that 
II I7' - I711 is much smaller than I[ 1711, as evident from the fact that while <i1171 i> is 
almost equal to/~ (i.e. proportional to the number of electrons) II 17' - 1711 simply 
brings the linked effects of the T~ples and Quadruples, which is much smaller. 
Therefore one may except that II0 - ~ '  II is small, i.e. that the coefficients C~ and 
C~'~ are very similar. Then instead of diagonalizing P(H + 17')P one may simply 
calculate/~' - E as a first-order correction: 

= <_ lz + 17'1¢7> 

=/~ + <_~l 17'[t__->- <_~[ I71~> (10) 

where _~ is the normalized vector ~: 

0 =  ~TxCo 

(Co being the coefficient of ~bo in the normalized function _~). 
The energies have been calculated according to Eqs. (9) and (10) using different 

evaluations of the coefficients C~, of the Triples and Quadruples. For the Triples the 
coefficients have always been estimated perturbatively according to Eq. (6), using 
Epstein-Nesbet type denominators. 

Approximation td-1 (where td stands for "total dressing") uses the same pertur- 
bative evaluation of the coefficients of the quadruples Eq. (6). Some practical details 
about the implementation of this approximation are given in Appendix 2, which 
also discusses the interest of considering Epstein-Nesbet denominators. 
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Better approximations may be derived by considering non-perturbative evalu- 
ations of the coefficients of the Quadruples. Approximation td-2' uses the expression 
of the coefficients C' Q, assumed by the CCSD expansion: 

Ct ~ Q, : ~ Ci Cj (11) 
(i, j) 

D" i D~Oi=Q~ 

where (i, j) stands for a couple ((i, j)  = (j, i)). 
In a slightly different approximation td-2, one may use an improved evaluation 

[16], which does not require the energy denominator additivity, and write: 

(~,J) ~ J AQ~ (12) 
DiD~ao=Q, 

where Ai, Aj and AQ, are the Epstein-Nesbet energy denominators relative to the 
Doubles ~bi and ~bj and to the Quadruples Q,. 

Both Eta.2, and Eta.2 incorporate some of the interactions between the Quadru- 
ples, i.e. add an infinite number of interaction lines between the 2nd and the 3rd 
interaction lines in the following diagram, inside the rectangular windows, but not 
between the windows. 

[/..A/ 

These effects were not incorporated in Eta_ 1. 
The last approximation Etd. 2 incorporates some "diagonal" 5th- and higher- 

order diagrams which link 4th-order unlinked diagrams without changing the 
labels of the propagation lines. 

2.4 Comparison with other methods 

It may be worth comparing our proposals to the existing methods. As already said, 
the starting point (SC2)SDCI can be considered as a CEPA-with all EPV contribu- 
tions. The coefficients of the Doubles and Singles are free from unlinked contribu- 
tions but their determination does not take into account the linked effects of the 
Quadruples, which play a role in the determination of the amplitude in CCSD. 
Thus they are less accurate than those of CCSD, but obtained at a much lower 
price and are qualitatively correct. 
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The main point is to avoid the unlinked contributions in the amplitudes of the 
Doubles (which make the coefficients of SDCI qualitatively wrong) and the linked 
effects of the Quadruples may be added a posteriori. This is the strategy followed in 
the present paper. Once the amplitudes of the Singles and Doubles are qualitatively 
correct, one may deviate from the full CCSD treatment by treating more approxim- 
ately some linked contributions and this was the freedom exploited by the so-called 
Quadratic CI [23], although this method remains very close to the CC-SD method. 
Here the distance to CCSD is larger. The inclusion of the linked effects of the 
Quadruple (and of course of the Triples) is purely perturbative in our (TQ)L 
approximation, while a Coupled-Cluster expression for the coefficients of the 
Quadruple is accepted in the td-2' approximation. As remarked by a referee, if the 
dressing td-2' by the Quadruples only was fully treated, through the building and 
diagonalization of the newly dressed matrix and iterated to self-consistence, the 
method should converge to the solution of the CCSD equations and might be seen 
as a practical procedure to find this solution. But there is no reason to forget the 
linked effect of the Triples which apparently is more important than the linked 
effect of the Quadruples in many molecular problems. 

In the td-2 approximation, the energy of the Quadruples appears explicitly and 
permits the inclusion of some T4 corrections (i.e. deviations of the coefficients of the 
Quadruples from the products of the coefficients of the Double). On the contrary 
the present approximations do not consider the 3rd-order connected contributions 
on the coefficients of the Triples and Quadruples (of the types below which are 
incorporated in the CCSD(TQ*) [24] and, of course, in the CCSDTQ [25] and 
reflect the interaction between Triples and Quadruples. 

U .... 7 U .... 
3 Results 

We selected 3 molecules for which Full CI results are available; namely i) HF at 
three interatomic distances in a DZP basis set [26], ii) Bez at four interatomic 
distances in a 7s, 3p, ld  basis set [27], iii) NH 3 at its equilibrium distance in a DZP 
basis set [28]. 

In all cases the energies have been calculated with four approximations, namely 
those which have been called (SC)2SD(TQ)L, Etd-1, Etd.2, and Etd.2. In most cases 
the two last methods give very close results so that we shall only give the 
Etd. 2 values except when the difference become significant. 

For HF, the results appear in Table 1. The comparison with FCI and with other 
estimates is only possible for re, 1.5 r~ and 2.0 r~ and are detailed in Table 2. Using 
canonical MOs the error of the (SC)2SDCI is 1.2 to 1.8 times larger than the error 
of the CCSD. One expects that the inclusion of the linked effects of the Triples and 
Quadruples should lead close to the CCSD(T) values, if not of these of the CCDST 
method. The errors of the CCSD(T) are .000099, .000149 and .0019 Hartree at 
r = 1, 1.5 and 2 re, respectively, and those of CCSDT are more regular (.000266, 
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Table 1. Calculated potential energy curve of the HF molecule (DZP basis set). (r e = 1.733 bohr) (origin of 
the energy = - 99 Hartree) 

Interat. SCF (SC) 2 SD (SC)2SD(TQ)L Etd_ l Etd_ 2 FCI 
distance r/re  

.65 -0.760176 -0.943915 -0.947749 -0.948341 -0.947756 

.75 -0.942939 -1.131271 -1.135453 - 1.136130 -1.135438 

.9 - 1.038652 -1.233164 -1.237903 -1.238739 -1.237849 
1.0 -1.047087 -1.245386 -1.250526 -1.251444 -1.250414 
1.1 -1.035486 -1.237507 -1.243062 -1.244044 -1.242868 
1.5 -0.933229 -1.152184 -1.159786 -1.160876 -1.159076 
2.0 -0.817572 -1.068377 -1.080749 -1.081085 -1.078438 
3.0 -0.686299 -1.020537 -1.051007 -1.040793 -1.037671 
4.0 -0.630972 -1.015339 -1.057698 -1.039687 -1.036640 
5.0 -0.607955 -1.014428 -1.060592 -1.040436 -1.037465 

- 1.250969 

- 1.160393 
- 1.081108 

Table 2. Calculated correlation energies for the HF molecule Full CI = exact correlation 
energies (Hartree) in the (4s, 2p, ld) basis set; the other numbers are the absolute errors in mH 
(r e = 1.733 bohr) 

re 1.5 re 2.0 re 

Full C1 ~ - .203882 
CCSDTQ ~ 0.018 
CCSDT ~ 0.266 
CCSD(T) d 0.099 
CCSD ° 3.01 

This work canon. MOs 
(SC) 2 SD 5.58 
(SC) 2 SD(TQ)L 0.443 
td- 1 - 0.475 
td-2' O.327 
td-2 0.555 

This work quasi natural MOs 
(SC) 2 SD 5.76 
(SC)2SD (TQ) L 0.523 
td-1 - O.760 
td-2' 0.408 
td-2 0.482 

- 0.227164 
0.041 
0.646 
0.149 
5.10 

8.21 
0.607 

- -  0.483 
0.774 
1 . 3 2  

8.423 
0.741 

- 0.986 
0.997 
1.14 

- 0.263536 
0.062 
1.125 

- 1.90 
10.18 

12.7 
0.359 
0.023 
1 . 6 5  

2.67 

13.1 
0.644 

- 0.362 
2.06 
2.40 

a Ref. [26] 
b Ref. [25] 
o Ref. [ 3 o ]  

d Ref. [29] 

.000646 and .001125 Hartree). Our worse results are those of the Eta-2 approxima- 
tion (despite its more elaborate character) and the errors are about twice those of 
CCSDT. The comparison with CCSDT is a bit better for Eta-z, (see Table 2). 
Surprisingly the two other approximations give lower errors (in absolute value), 
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Table 3. Spectroscopic properties (in cm- 1; Re in A) and dissociation energies (in eV) of HF 

Type of calculation Re De (De XeO) e Be ere 

Experiment a 0.9168 6.128 b 4138.32 89.88 20.9557 0.798 
This work ¢ 
(SC)2SD 0.917 4234.8 88.48 20.943 0.746 
(SC)2 SD(TQ)L 0.919 5.17 d 4199.9 90.09 20.862 0.761 
td-1 0.919 5.74 d 4201.1 90.49 20.852 0.761 
td-2 0.919 5.79 d 4211.9 90.05 20.881 0.757 
td-2 0.919 5.75 d 4208.0 90.35 20.875 0.760 

a Ref. [331 
b D O = 5,869 eV from Ref. [33] 
c From fitting using Hutson method (Ref. [34]). Numerical integrations between 0.65 re and 4 re; 
(re = 1.733 bohr) 
d From the values of energy at (R = 5 re) -- (R = re) 

especially at long interatomic distances. The major  deviation (for Etd. 2 at 2re) is 
1.7 kcal m o l -  1 

As mentioned elsewhere, the method is not invariant under unitary transforma- 
tions of the MOs. Table 2 gives the results when using quasi-natural MOs obtained 
from the Mrller-Plesset  1 st-order coefficients [31]. The variation of the energies is 
very small, and the percentage of the correlation energy in the td-2 approximation 
(99.80%, 99.53% and 99.10% at re, 1.5 r e and 2r e respectively) parallels those of 
CCSDT [32] (99.87, 99.7 and 99.36%). Whatever the choice of the MOs, our 
treatments of the linked effects of Triples and Quadruples reduces the error of the 
(SC)2SDCI by one order of magnitude. 

The (SC)2SDCI converges at large interatomic distance but give a significantly 
overestimated dissociation energy (E(5re) -  E(re)= 6.28 e V ) a s  discussed below. 
We have not found the exact energy of F" in that basis so that the Full CI 
dissocation energy is not known. Table 3 gives the dissociation energy calculated 
as E(5re) -  E(re). The perturbative evaluation of (SC) 2 SDCI(TQ)L is too small 
(5.17 eV), while those of the total dressing are reasonable in view of the smallness of 
the basis set (5.74 and 5.79 eV), to be compared with the experimental value 
(6.13 eV) [33]. As expected, the (SC)2SDCI(TQ)L method does not diverge but 
does not behave properly at large interatomic distances since the potential curve 
decreases by 5.6 kcal m o l -  1 between 3 re and 5 re. The energies after total dressing 
exhibit a slight reminder of that anomaly since they present a very small barrier 
(.47 kcalmo1-1 for Etd_ 1 and .51 kcalmo1-1 for Etd.2) at 4re. 

Regarding spectroscopic properties, for which we have no FCI  values, the 
(SC)2SDCI estimates fortunately compare very well with the experimental values 
(cf. Table 3) and the three procedures to include the linked TQ effects are consistent 
and remain in good agreement with experiment. 

For  Be2, the Full CI energies are known for the potential well (r = 4.5, 4.75, 5.0 
and 5.25 bohr) [27]. These values correspond to a slightly different basis set (5d) 
leading to an energy of about  + .04 m H  [35]. For  that molecule the role of the 
Triples is known to be dramatic since it is responsible for the very small potential 
well. The results appear  in Tables 4 and 5. The (SC)2SDCI potential energy curve is 
purely repulsive and 2 to 4 m H  above the CCSD potential curve (using localized 
MOs the agreement between (SC)2SDCI and CCSD was much better [17]). 
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Table 5. Calculated correlation energy for the Be2 molecule. Full CI = exact correlation ener- 
gies (Hartree); the other numbers are the absolute errors in mH 

119 

r (bohr) 4.5 4.75 5.0 5.25 

Full CP - .1052 -.1027 - .1006 -.0988 
CCSDT b 0.3 0.2 0.2 0.2 
CC-SD(T) b 1.0 0.9 0.9 0.8 
CC-SD c 4.8 4.2 3.6 3.1 
This work 
(SC)ZSD 6.5 6.2 6.0 5.8 
(SC) 2 SD(TQ)L 1.7 1.7 1.8 1.8 
td-1 - 0.1 0.2 0.2 0.3 
td-2' 0.5 0.5 0.5 0.5 
td-2 0.4 0.4 0.3 0.3 

a Ref. [27] 
u Ref. [35] 
° Ref. 1-36] 

Regarding the difference with full CI in the potential well region, the largest error 
concerns the perturbative estimate (SC)ZSDCI(TQ)L; it varies from 1.68 to 
1.81 m H  between 4.5 and 5.0 bohr. The proximity with the Full CI is better for the 
total-dressing, the errors being of the order of 0.5 m H  and the parallelism of the 
Eta.z, and Eta-z values with the Full CI ones is surprising. These results compare 
better than those of CCSD (T) and are very close to those of CCSDT. 

At larger interatomic distances, the FCI  results are not reported, except as 
a curve in Ref. [27], up to 11 bohr. The potential curve is not regular and exhibits 
a shoulder at 6.5 bohr. The behaviour of the (SC)ZSD(TQ)L and td-1 and td-2' 
approximations are satisfactory, while the curve given by the td-2 approximation 
is more similar to that of CCSD (T) at large distances, as appears in Fig. 1 and 
Table 1 of Ref. [35]. 

The calculation of N H  3 in a D Z P  basis set has been the largest Full CI 
calculation [28] for a while, concerning in principle more than 2 x 10 s determi- 
nants but actually limited to the 8 x 105 determinants of largest amplitude. The 
results are reported in Table 6, concerning both the canonical MOs and approxim- 
ate Natural  MOs (obtained from the lst-order M P  wavefunction). The results are 
similar for the two M O  sets and for the various approximations, and the main 
result is the significant improvement  brought by the inclusion of the linked effects 
of Triples and Quadruples, which reduces the error by about  one order of magni- 
tude with respect to (SC)2SDCI. The largest error is 1.1 kcal mol-1 .  In that case the 
total dressings lead to overestimated correlation energies. One must mention, 
however, that our (SC) 2 Selected CI led us to revise [18] the estimate of the 
correlation energy of Ref. [28] to larger absolute value. 

The electronic correlation - and especially the dynamical correlations - plays 
a crucial role in the construction of the bond in the FE molecule. We have chosen 
a moderate  size basis set (4s, 3p, ld) which has been used in several previous works 
[37]. Full CI was not performed on that problem, but the best estimates of the 
dissociation energy in that basis are about  1.2 eV instead of the 1.66 eV experi- 
mental value. The total energies are reported in Table 7 and Fig. 1, together with 
CCSD, CCSD(T), CCSDT-1 (approximation to CCSDT) and Multireference 
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+ CCSDT-1 

---o-- MR-LCCM- 10 

-1,21 -~ 
2 4 6 8 10 Fig. 1. Po ten t i a l  energy curves of F 2 

R (Bohr) 

Table  6. Cor re l a t ion  energy of the N H a  molecule  in a D Z P  basis  set in 

Har t r ee  (and er ror  in m H  wi th  respect  to the Ful l  CI  es t imate  = - . 2 0 9 8  
+ 0.0001) a 

Canon ica l  M O s  A p p r o x i m a t e  
na tu ra l  M O s  

(SC) 2 SD - .203288 (6.5) - .202913 (6.9) 
(SC) 2 SD (TQ) - .209624 (0.2) - .209751 (0.1) 

td-1 - . 2 1 0 8 6 7 ( -  1.1) - . 2 1 1 5 8 1 ( -  1.8) 

td-2 - .209965 ( - 0.2) - .210323 ( - 0.5) 

a Ref. [28] gives the to ta l  energy as - 56.4236 4- 0.0001 Hartree.  In  the same 

basis  set, the SCF  energy is - 56.213741 Hartree.  O the r  ca lcu la t ions  (Ref. 

[18]) suggests  tha t  the cor re la t ion  energy is s l ight ly  la rger  (in abso lu te  value) 

Linear Coupled Cluster (MRLCCM-10) based on a 10-configuration MCSCF 
wavefunction, all taken from Ref. [37]. The results deserve the following comments: 

i) the (SC) 2 SDCI energy is about 0.6 mH above the CCSD value (as mentioned 
elsewhere [17]), and they both give an overestimated dissociation energy: 2.36 eV 
(this work, from 10 bohr - 2.7 bohr), 2.33 eV in CCSD (6.0 bohr - 2.7 bohr), 
ii) all methods including the Triples and linked effects of the Quadruples agree 
to locate the minimum of the curve at re "~ 2.7 bohr and an energy of 199.188 
Hartree ___ 1 mH, (except the td-1 approximation which gives 199.191, 
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Table 8. Spectroscopic properties (in cm- 1; Re in A) and dissociation energies (in eV) for F2 

Type of calculation R e De oge Xec% Be oce 

Experiment" 1,412 1.66 917 11.2 0.8902 0.0141 
CCSD b 1.410 2.36 c 945 12.6 0.892 0.0127 
CCSD(T4) b 1.430 _d 870 19.1 0.868 0.0149 
CCSDT-1 b 1.434 1.13 c 844 14.8 0.863 0.0159 
MR-LCCM-10 b 1.435 1.22 e 842 15.3 0.862 0.0157 
This work f 
(SC) 2 SD 1,407 2.33 g 923 8.98 0.897 0.0131 
(SC) 2 SD(TQ)L 1.437 -~ 830 17.1 0.865 0.0197 
td-1 1.437 1.23 ~ 834 14.3 0.862 0.0172 
td-2 1.433 1.19 c 848 14.9 0.867 0.0173 

a Ref. [-38] 
b Ref. [-37] 

From the values of energy at (R = 6.0 bohr) and (R = 2.7 bohr) 
d Divergent behaviour of the potential curve at long-range distances. De from E(R = 4.0 
bohr) - E(R = 2.7 bohr) = 1.15 eV 
e See c): (R = 100,0 bohr) - (R = 2.7 bohr) 
f From fitting using Hutson method (Ref. 1-34]); numerical integrations between R = 2.0 bohr and 
R = 6.0 bohr 
g See c): (R = 10.0 bohr) - (R = 2.7 bohr) 
h Non-divergent unsatisfactory energy decrease besides 4.0 bohr, De from E(R = 4.0 bohr) - E(R = 2.7 
bohr) = 0.85 eV 

iii) the pe r tu rba t ive  add i t i on  of  the Triples  in Ref. 1-37] leads to a divergence 
besides 4 bohr ,  cer ta inly because of  pe r tu rba t ive  eva lua t ion  for the coefficients of  
the Doubles .  O u r  pe r tu rba t ive  es t imate  of  the l inked effects of  the Triples  and  
Quadrup le s  (SC)2SD(TQ)L suffers a pa tho log ica l  (a l though non-divergent )  energy 
decrease at  large in te ra tomic  distances,  as occur red  in FH,  
iv) the a p p r o x i m a t e  results of  the to ta l  dressing (td-1 and  td-2) are  very close to the 
CCSDT-1  and  M R - L C C M  results. They  present  a sl ight bar r ie r  (smaller  than  
1 kca l  m o l -  1) at  6 bohr ,  a spur ious  behav iou r  also exhib i ted  by  these e l abo ra t e  CC 
methods .  

The  g round-s ta te  spec t roscopic  p roper t ies  and  the eva lua t ion  of  De a p p e a r  in 
Table  8. The  results show the s t rong  agreement  between the results of  our  
to ta l -dress ing  p rocedure  and  those of  CCSDT-1  or  M R - L C C M .  

4 Possible truncations of the Triples and Quadruples 

The present  p roposa l s  for including the l inked effects of  Tr iples  and  Q ua d rup l e s  
require  app rox ima te ly  the same c o m p u t a t i o n  time, which increases rough ly  as 
no 4 x n 4 where no and  nv are  the number  of occupied  and  vir tual  M O s  respectively.  
F o r  large basis sets a n d / o r  large n u m b e r  of  e lectrons the ca lcula t ion  of  these effects 
is s ignif icantly larger  than  the p re l iminary  (SC) 2 SDCI ,  which behaves  as a n o r m a l  
SDCI.  I t  m a y  thus be interes t ing to see whether  one could  no t  t runca te  the set of 
Tr iples  and  Quadrup le s  to reduce the compu ta t i o na l  t ime of  the lengthy step. 

The  easiest  way to per form this t runca t ion  in a sys temat ic  m a n n e r  consists  
in freezing some vir tual  M O s  in the genera t ion  of  the Triples  and  Quadrup les .  This 
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Table 9. Efficiency of the trunction of virtual MOs in the calculation of the linked effects of Triples and 
Quadruples in NH3 with quasi-natural MOs 

Number of % of occupation % of energy % of computation 
virtual MOs (SC)2 SD(Td)L td-1 td-2 time 

6 78 42 45 39 0.38 
9 92 53 55 50 7.5 

14 97 79 81 78 12 
18 99 92 93 92 32 
24 100 100 100 100 100 

is only meaningful if one uses quasi-natural MOs as obtained, e.g. after the 
(SC)2SDCI step or from the MP lst-order wavefunction, and if one considers the 
occupation number as a selection criterion. The efficiency of such a selection has 
been tested on the NH3 problem with MP1 approximate natural MOs [31]. 

We have selected successively the 6, 9, 14 and 18 most occupied virtual 
quasi-natural MOs over a total of 24. The fraction of the total energy lowering 
brought by the linked effects of the Triples and Quadruples is given in Table 9, 
together with the fraction of computation time with respect to the full one. 
Although the convergence of the energetic effect does not follow the rate of 
occupation in the virtual space, the efficiency in terms of computation time is 
dramatic. One can obtain 50% of the linked contributions of Triples and Quad- 
ruples with 10% only of the computation time, and with a computational effort 
divided by a factor 3, one only misses 8% of the desired energy correction. 

5 Discussion 

The present work has proposed two efficient procedures to add the linked contri- 
butions of Triples and Quadruples to a size-consistent self-consistently dressed 
Singles and Doubles CI. The first procedure consists in a perturbative calculation 
of these effects. It proves to be very accurate in the potential well region, but, 
although it does not diverge under bond breaking, it becomes much less reliable in 
these regions. The second procedure consists in an improvement of the dressing of 
the SD-CI matrix to incorporate these linked effects. The three here-proposed 
approximations (td-1, td-2', td-2) go through a recalculation of the mean value of 
the dressing operator in an unchanged SD wavefunction. Among the three dress- 
ings, td-2 is in principle the most sophisticated one; however, going from td-2' to 
td-2 (i.e. in corporating the diagonal T4 diagram through Eq. (12)) does not bring 
any significant improvement of the results and since the calculation of td-2' is much 
shorter, we would recommend that version. Anyway the three approximations give 
very similar results, which compare very well with either CCSD(T) or CCSDT 
results. For all the available Full CI benchmarks the error is within 1 kcal mol-1, 
even when a single bond is being broken. The error is one order of magnitude 
smaller than for the (SC)ZSDCI which compared with CCSD. The treatments 
satisfactorily give the following features: 

i) the major change of the HF potential curve toward the FCI one, with a signifi- 
cant reduction of De 
ii) appearance of the potential well of Be2 
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iii) a decrease of the dissociation energy of F2 by a factor 2, the potential curve 
lying very near of the best available MRCC calculations. 

The method is very easy to implement, and it does not require any extra 
intermediate arrays to be stored in the computer memory (while the efficient CC 
algorithms require such intermediate arrays). As a result of that simplicity the 
computation time is surprisingly low, despite the no4 no4 dependence, since in the 
NH3 molecule for instance, the 2.3 × 106 Quadruples and Triples are considered in 
less than 10' on a HP750 work station. 

One may wonder whether the method may be improved. Of course one might 
rediagonalize the SDCI matrix after the total dressing rather than using the 
unchanged wavefunction. This will be explored in further works. The main im- 
provement should be the generalization to a valence CAS reference, replacing the 
HF single determinant. The generalization of the (SC)2SDCI to a (SC)2MRSDCI is 
already available 1-17, 18-1, and the extension of the here-proposed treatment of 
Triples and Quadruples to the MR space is under work. One may expect that such 
an improvement would suppress the small irregularities ( < 1 kcal mol- 1) exhib- 
ited at long interatomic distances in the HF and F2 potential curves. For molecular 
systems where the number of TQ determinants would be too large, it has been 
shown that using approximate natural MOs and restricting the TQ space to the 
most occupied natural MOs may save a lot of computation time while bringing 
most of the searched correction to the correlation energy. Finally, for very large 
systems we are currently considering a three-class algorithm treating the small 
double excitations in a perturbative manner, the other ones being treated size- 
consistently through the (SC)2SDCI treatment and the most important Triples and 
Quadruples by the procedure presented in that work. 

Appendix 1. Substraction of the unlinked effects of Triples and 
Quadruples in the (SC) z SDCT (TQ)L version 

If a Quadruple determinant Q, may be written: 

Q, = D, + D}  

where D~ + and Dj + are disjoined (no hole nor particle in common), the unlinked 
4th-order interactions which, in a diagrammatic picture close on qgo coming from 
~bi, are: 

= el, ~ C~ <¢o IHI ¢j><CilHl ¢o> 
AQ~ 

and 

<qgo [Hlq6~><qSi IHI Q~><Q= [HI q6~><~b~ Inl qgo> 
AiAQ~Ai 

= C ~  Cl,~ <~bo Ial ~bj)<~bj Inl ~o) 
AQ~ l!1  i!ii0 
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where C! 1) is the coefficient of ~i in the lst-order wave function ~(1). 
Due to the M611er-Plesset energy denominator additivity: 

AQ~ = Ai + Aj 

it is possible to write the sum of the two effects as: 

(CI,)2 <~olnl~j><¢:lHl~o> 
At 

_- (C!1))2<¢ o I HI ~bj>C~ 1) 

One recognizes here the lowest-order approximation of the terms~('2<¢~[ l~¢i> 
where <¢~1V1¢~> is given by Eq. (1) and which already belongs to E. 

/~ = <~71H1~7> + <$,1 Vie> 

= <~TLHIqT> + Y~ CF¢,ltTl¢,> 
/ 

This is true for each decomposition of Q, into double excitations and one must 
compute for each Q,: 

E~ L = E (<~ol~l~,>c~ + <¢olUl~>c,'¢ 
+ ,+,,j, \ h-0~ / 

O i Dj ~bo = Qn 

where the summation runs over the couples of complementary double excitations 
contained in Q~. 

For the Triples, one must consider all the decompositions: 

r~ -= D+M+¢o 

where M + is a single excitation, and one must compute: 

+ q, J3 
D i Dj ~bo = T~ 

where D + is a double excitation contained in T~ and M + is the complementary 
single excitation. One may remark that if ~bo is self-consistent, the unlinked 
contributions in Er  are of sixth order only. 

 iiii0 Ta 
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Appendix 2. Practical implementation of the total dressing 
(Approximation td-1) 

Regarding the Triples, the coefficients of which are taken from Eq. (6), one should 
remember that the dressing of the Singles incorporates the effect of three types of 
unlinked diagrams when the Brillouin theorem is satisfied, namely: 

011 
0 iiii0 

011 01111  /iiii1 
and the dressing (q~i[ l?'lq~i) of the Single ~bi only incorporates the first effect while 
the three of them were considered in the dressing (q~[ V[q~z). Hence the effect of 
a Triple excitation T, becomes: 

6T, = I(~lnl  T~)I2 - ~ GZl(q~°lnl4'j)12 
A T~ (i,j) A T, 

which keeps the effect of the two last diagrams which were brought by /?and 
simply avoids a reductant inclusion of the first one. 

Regarding the Quadruples, one may simply use Eq. (6) and one obtains an 
analogous expression: 

5Q~,=((~_IH'Q~,)'2- ~ (Ci((aolHl(oj) + Cj(~olHl(oi))2)/AQ~ 
+ (/,J) 

D i Dj @o = ~ 

In this expression the coefficients Ci are those of the normalized function ~ and the 
second term rep~sents the unlinked contributions of the Quadruple Q~, already 
incoporated in E. Finally, the expression of the energy in this approximation 
(Approx. 1) is given by: 

Etd-1 = / ~ +  ~ 5T~+ ~ 5Qa 
a triples a quadruples 

where td stands for total dressing. 
In the calculations, the energy denominators are differences between the mean 

energies of the reference determinant qS0 and of the Triple or Quadruple determi- 
nant. The use of these Epstein-Nesbet denominators incorporates 5th- and higher- 
order corrections which were not considered in the previous MP approximation. 
However, the present approximation cannot be regarded as an Epstein-Nesbet 
version of Eqs. (3, 4) since it now goes through a redefinition of the dressing, as is 
clear from the appearance of the normalized coefficients. In fact, this approxima- 
tion should have a more satisfactory behaviour when the correlation becomes 
strong (e.g. under bond breaking). 
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